$k-range-determination-methods¶
This makes only sense for \(\mathbf{k} \cdot \mathbf{p}\) calculations in 1D (\(k_\parallel = ( k_x, k_y )\)) and 2D (\(k_\parallel = ( k_z )\)) but not in 3D.
Solve Schrödinger equation for \(( k_x, k_y ) = (0,0)\).
Define a set of \(k_\parallel\) that one needs and solve \(\mathbf{k} \cdot \mathbf{p}\) Schrödinger equation for every \(k_\parallel\).
$k-range-determination-methods required model-name character required model-type-number integer required $end_k-range-determination-methods
Two models are supported.
- model-name
- value:
bulk-dispersion-analysis
- model-type-number
- value:
1
Here, the range for \(k_\parallel\) is determined automatically by the program using the bulk energy dispersion \(E(k)\). More information…
- model-name
- value:
k-max-input
- model-type-number
- value:
2
A maximum value \(k_{\text {max}}\) of \(k_\parallel\) has to be specified in the input file.
Example
!---------------------------------------------! $k-range-determination-methods model-name = bulk-dispersion-analysis model-type-number = 1 model-name = k-max-input model-type-number = 2 $end_k-range-determination-methods !---------------------------------------------!